Chem. Ber. 114, 2786-2801 (1981)

Stereoselektive Synthese von Alkoholen, IX¹⁾

Absolute Konfiguration von Stegobinon

Reinhard W. Hoffmann *^a, Wolfgang Ladner^a, Klaus Steinbach^a, Werner Massa^a, Roland Schmidt^a und Günther Snatzke^b

Fachbereich Chemie der Universität Marburg^a, Hans-Meerwein-Str., D-3550 Marburg an der Lahn, und

Lehrstuhl für Strukturchemie der Ruhr-Universität Bochum⁶, Universitätsstr. 150, D-4630 Bochum 1

Eingegangen am 21. November 1980

Eine diastereo- und enantioselektive Synthese des Homoallylalkohols 5 aus dem Boronester 4 eröffnete den Zugang zu optisch aktiven Isomeren des Stegobinons. Stegobinon-Isomere mit der richtigen absoluten Konfiguration an C-2 wurden ausgehend von (3S)-3-Hydroxy-2-methylbuttersäureester 17 dargestellt. Das CD-Spektrum des Isomeren 20B entsprach dem des Naturstoffs. Daraus wurde die Konfiguration zu 2S, 3R, 7R für das natürliche Stegobinon abgeleitet und durch eine Röntgenstrukturanalyse des 7-Epistegobinons (20A) erhärtet.

Stereoselective Synthesis of Alcohols, IX¹⁾ Absolute Configuration of Stegobinone

Diastereoselective as well as enantioselective conversion of the boronate 4 into the homoallyl alcohol 5 served as basis for the synthesis of optically active stegobinone isomers. Material with the correct absolute configuration at C-2 was obtained starting from (3S)-3-hydroxy-2-methylbutyrate 17. The CD spectrum of the isomer 20B corresponded to that of the natural product. Its configuration was assigned as 2S, 3R, 7R and was substantiated by an X-ray structure determination of 7-epistegobinone (20A).

Stegobium paniceum (L.) verursacht als "Brotkäfer" bzw. "drugstore beetle" in Lagerhäusern, Kornspeichern, Läden und Bibliotheken durch Fraß und Verunreinigung von Lagerbeständen beträchtliche wirtschaftliche Schäden, so daß man sich um die Bekämpfung des Käfers bemüht²⁾. Ein Einsatz von Pheromonen dieses Käfers könnte seine artspezifische Bekämpfung ermöglichen. Darüber hinaus könnten Pheromon-Fallen Auskunft über das Ausmaß des Befalls von Lagerhäusern mit St. paniceum geben.

Mitte der 70er Jahre wurde aus 30000 Weibchen des Käfers ein Stoff isoliert, der noch in Mengen von 10^{-13} g das Sexualverhalten der Männchen auslöste³⁾. Die Struktur dieses kristallisierten optisch aktiven Wirkstoffes wurde soweit geklärt⁴⁾, daß es sich um 3 mit *cis*-ständigen Methyl-Gruppen an C-2 und C-3 handelt. 1979 wurden zwei nichtstereoselektive Synthesen publiziert, die ein racemisches Epimerengemisch des als Stegobinon bezeichneten Wirkstoffes ergaben ^{5,6)}. Daraus wurde durch Chromatographie ein C-7-Epimeren-Gemisch erhalten, dessen spektroskopische Daten mit denen des Naturstoffes (weitgehend?) übereinstimmten⁶⁾, dessen biologische Wirksamkeit jedoch um den Faktor 1000 niedriger lag. Man kann deswegen annehmen, daß das Enantiomere des Naturstoffs oder das C-7-Epimere des Naturstoffs oder beide inhibierende Wirkung besitzen. Dieses Phänomen wurde bei Pheromonen schon wiederholt beobachtet⁷⁾. Insofern besteht auch von der Anwendung her ein Interesse, reine Enantiomere des Stegobinons zu gewinnen. Wir berichten hier über die Darstellung des 2R,3S- und des 2S,3R-Isomeren von $3^{8)}$. Die Synthese ging von Verbindungen bekannter absoluter Konfiguration aus und erlaubte anhand des CD-Spektrums, die absolute Konfiguration des Naturstoffs zuzuordnen.

Synthesekonzept

Die bisherigen Synthesen^{5,6)} erzeugten die Stegobinon-Isomeren durch saure Cyclisierung des Hydroxytriketons **2**.

Dabei dürfte die Konfiguration an C-3, -5 und -7 von 2 labil sein, so daß die stereochemische Information nur über C-2 eingebracht werden kann. Die Chiralität dieses Zentrums wurde bei den bisher publizierten Synthesen nicht vorgegeben, sondern im Zuge der Reaktionsfolge racemisch erhalten. Wir wollten deswegen von β -Hydroxybuttersäure-Derivaten 1 bekannter absoluter Konfiguration ausgehen, um damit über 2 zu Stegobinon zu gelangen. Wir hofften weiterhin, daß in Stegobinon, einem vinylogen β -Diketon, das Zentrum C-7 leicht epimerisiert, so daß der Naturstoff als thermodynamisch stabilstes Epimeres vorliegt. Dann sollte auch die Synthese zu dem stabileren und damit einheitlichen C-7-Epimeren führen. Diese Annahme wurde nicht bestätigt.

(2*R*,3*S*)-Stegobinon (11)

 $(2R^*, 3R^*)$ -3-Methyl-4-penten-2-ol (5) entspricht in der Art der Substituenten und der relativen Konfiguration der Teilstruktur an C-2 und C-3 in Stegobinon. Kürzlich berichteten wir über die Bildung von 5 durch diastereoselektive Addition von (Z)-Crotylboronsäureestern an Acetaldehyd⁹⁾. Optisch aktives 5 sollte durch eine chirale Modifizierung des Reagenz, d. h. unter Anwendung des Boronesters 4¹⁰⁾, zugänglich sein, wobei die Erfahrungen bei der Umsetzung von Allylboronsäureestern eine asymmetrische Induktion von 60–85% zu Gunsten des 2*R*-Isomeren erwarten ließen^{11,12)}. Bei der Umsetzung von Acetaldehyd mit 4 erhielten wir 93% 5, das noch etwa 2–5% des (2R,3S)-Diastereomeren enthielt¹⁾. Die Enantiomerenreinheit von 5 wurde mit Moshers-Reagenz¹³⁾, Verschiebungs-Versuchen mit Eu(TFC)₃¹⁴⁾ oder durch Gaschromatographie der Camphansäureester¹⁵⁾ zu 68–75% bestimmt. Die absolute Konfiguration von 5 wurde durch chemische Korrelation mit 8¹⁶⁾ gesichert. Dazu wurde 5 zu 6 acetyliert (87%), dieses ozonisiert und nach oxidativer Aufarbeitung und Veresterung in 7 (76%) übergeführt. Umesterung von 7 ergab 97% des (2S,3R)-3-Hydroxy-2methyl-buttersäureesters 8. Der Drehwert des erhaltenen 8 entsprach einer optischen Reinheit von 69% und bestätigte die absolute Konfiguration von 5 als 2R, 3R.

Zur weiteren Umwandlung in 2 wurde die Hydroxyl-Gruppe von 8 erneut geschützt. Der Ester 9 wurde dann mit zwei Äquivalenten des Dianions 10 des 4-Methyl-3,5-heptandions¹⁷⁾ nach Weiler¹⁸⁾ kondensiert. Nach Ablöschen der Reaktion mit wäßriger Ammoniumchlorid-Lösung ließ sich das Vorliegen des labilen Hydroxytriketons 2 NMR-spektroskopisch nachweisen.

Cyclisierungen von δ -Hydroxy- β -diketonen zu 2,3-Dihydropyronen sind wiederholt unter Säurekatalyse erreicht worden^{5, 19)}. In unserem Fall gelang die Cyclisierung zu 3 unter Einwirkung von 5proz. Schwefelsäure in Methanol. Dabei resultierten die Epimeren 11 und 12 im Verhältnis 2:1. Als Nebenprodukte ließen sich unter anderem 13 und 14 wahrscheinlich machen. Die Diastereomeren 11 und 12 wurden erst gemeinsam durch präparative Gaschromatographie abgetrennt und dann durch Mitteldruck-Flüssigchromatographie an Kieselgel getrennt und erneut durch Gaschromatographie gereinigt. Auf diese Weise erhielt man, bezogen auf 9, 16% reines 11 sowie 11% reines 12, die jeweils als C-7-Epimerengemisch vorliegen.

Sowohl 11 als auch 12 waren optisch aktiv. Die Cyclisierung kann also nicht über 15 abgelaufen sein, wie dies von *Hassner*⁶⁾ vermutet wurde. Die Tatsache, daß ausgehend von stereoeinheitlichem 9 eine Mischung von 11 und 12 erhalten wurde, macht weiterhin deutlich, daß die sterische Anordnung an C-3 von 2 bzw. 3 unter den Cyclisierungsbedingungen nicht erhalten blieb.

Das C-7-Epimerengemisch 11 zeigte im CD-Spektrum im Bereich des Enon- $n\pi^*$ -Übergangs bei 358.8 und 343.4 nm Banden (vgl. Tab. 1), die dem natürlichen Stegobinon in der Lage und Extinktion entsprechen, aber ein umgekehrtes Vorzeichen aufweisen. 11 ist also das Enantiomere des natürlichen Stegobinons, das damit die 2S,3*R*-Konfiguration 20 besitzen muß.

Wellenlänge (nm)	11	20	20 A	20 B	Natur- stoff ⁴⁾
358 - 360	+ 0.49	- 0.77	- 1.10	- 0.68	- 0.42
343 - 345	+1.03	-1.62	-2.70	-1.18	- 0.87
330 - 334	+1.06	-1.71	- 3.20	-1.10	
284 - 289	-0.23	+0.76	+17.96	-13.24	-13.0
260 - 261	+ 0.69	-1.44	-14.22	+ 9.04	+ 9.1

Tab. 1. CD-Daten ($\Delta \epsilon$) der Stegobinon-Isomeren und deren Gemische

(2S,3R)-Stegobinon (20)

Um 20, das Enantiomere von 11, zu erhalten, müßte man lediglich die Synthese mit dem zu 4 enantiomeren chiralen Reagenz wiederholen. Da aber bei der Cyclisierung von 2 zu 3 nur die sterische Anordnung von C-2, nicht aber die von C-3 erhalten bleibt, kann auf sterische Einheitlichkeit an C-3 verzichtet werden. Als Vorstufe für 20 würde der (3S)-Hydroxyester 17 genügen.

Wir fanden, daß 17 sehr einfach durch Hefe-Reduktion des α -Methylacetessigesters 16 zugänglich ist. Die Hefe-Reduktion enolisierbarer aliphatischer β -Ketoester führt in der Regel zu (3*S*)-Hydroxyestern mit 70 bis >97% e.e.²⁰, wenn die Hauptkette des Ketoesters nicht länger als vier C-Atome ist²¹). Die enantiospezifische Reduktion von cycloaliphatischen β -Ketoestern²⁰⁾, d. h. von α -verzweigten β -Ketoestern, lie β erhoffen, da β der α -Methylacetessigester 16 ebenfalls zum (3S)-Hydroxyester 17 hoher Enantiomerenreinheit reduziert werden kann. Die Einwirkung von aktiv gärender Hefe auf 16 führte mit 59% Ausbeute zu einem 6.4:1-Gemisch aus (2R,3S)- und (2S,3S)-17.

Die für die Stegobinon-Synthese irrelevante Zuordnung der Diastereomeren basiert auf folgenden Experimenten: *Fråter*²²) zeigte, daß bei der Alkylierung der Dianionen von (3*S*)- β -Hydroxycarbonsäureestern überwiegend das 2*S*,3*S*-Isomere entsteht. Wir haben deswegen das Dianion des β -Hydroxybuttersäure-ethylesters methyliert. Dabei überwog dasjenige Diastereomere von 17, das die kürzere Retentionszeit bei der Gaschromatographie zeigte. Bei der Hefe-Reduktion von 16 entstand vorwiegend das Isomere von 17 mit der längeren Retentionszeit. Weiterhin lassen sich in der racemischen Serie die diastereomeren 3-Hydroxy-2-methylbuttersäuren trennen ¹⁶, deren Strukturen zugeordnet sind. Nach Veresterung mit Diazomethan zeigte das 2*S**,3*S**-Isomere des 17 entsprechenden Methylesters eine kürzere Retentionszeit bei der Gaschromatographie als das 2*R**,3*S**-Isomere.

Wesentlich für die Synthese des Stegobinons ist die absolute Konfiguration und Enantiomerenreinheit des Zentrums an C-3 von 17. Um dies zu ermitteln, wurde 17 nach *Fråter*²²⁾ zu 18 methyliert. Durch Verwendung der stärkeren Base Lithium-cyclohexylisopropylamid²³⁾ konnte 18 mit 90% Ausbeute gewonnen werden. Die Enantiomerenreinheit wurde mit Hilfe von Eu(HFC)₃¹⁴⁾ zu >95% bestimmt. 18 wurde mit Kaliumhydroxid zu 19 verseift, dessen absolute Konfiguration bekannt ist²⁴⁾. Der Drehsinn des erhaltenen 19 sicherte, daß wie erwartet, das Enantiomere mit der 3*S*-Konfiguration vorlag.

Die Synthese des 2S-Isomeren 20 und 21 aus 17 verlief dann problemlos wie in der enantiomeren Serie. Die Drehwerte $[\alpha]_D^{25} = -131.7^\circ$ (c = 3.72, CDCl₃) für 20 und $[\alpha]_D^{25}$ $= +79.8^\circ$ (c = 19.8, CDCl₃) von 11 stehen in Übereinstimmung mit den Enantiomerenreinheiten der Ausgangsmaterialien 5 (68-75% e.e.) und 18 (>95\% e.e.). Die CD-Maxima von 20 bei 358 und 343.4 nm (vgl. Tab. 1) zeigen jetzt dieselben Vorzeichen wie die des Naturstoffs und besitzen entsprechend der höheren Enantiomerenreinheit auch höhere Absolutwerte als die von 11. In vorläufigen biologischen Tests^{25a)} erwies sich das C-7-Epimerengemisch 20 deutlich wirksamer als das Enantiomere 11. Jedoch erreichte 20 nicht die volle Wirksamkeit des Naturproduktes, das laut ¹H-NMR-Spektrum an C-7 sterisch einheitlich ist⁴⁾.

Die C-7-Epimeren

Im Gegensatz zum Naturstoff konnten weder 11 noch 20 kristallisiert erhalten werden. Die ¹H-NMR-Spektren wiesen die Substanzen klar als Epimeren-Gemische an C-7 aus. Ebenso weichen die CD-Spektren von 11 bzw. 20 im Bereich (<300 nm) signifikant von den für Stegobinon gemachten Angaben ab⁴⁾ (vgl. Tab. 1). Wir müssen daraus schließen, daß C-7 in 20 und 11 nicht, wie erhofft, spontan zur Konfiguration des Naturstoffs epimerisierte. Um Stegobinon zu erhalten, müssen demnach die C-7-Epimeren getrennt werden, wenn man nicht ganz andere stereospezifische Synthesewege entwickeln will. Die Trennung der Epimeren von 20 gelang mittels Hochdruck-Flüssig-Flüssig-Chromatographie an Kieselgel. Es wurden das rascher wandernde Isomere A und das langsamer wandernde Isomere B erhalten. Das Isomere A kristallisierte spontan; B nach Monaten während der Fertigstellung des Manuskriptes. Ein Vergleich der CD-Daten der Isomeren mit denen des Naturstoffs (vgl. Tab. 1) zeigt, daß 20B dem Naturstoff entspricht.

Im biologischen Test erwies sich das von uns dargestellte **20B** um 10³mal wirksamer als das Isomere **20A**. Die Wirksamkeit von **20B** unterschied sich aber nur wenig von der des Isomerengemischs **20**. Die eingangs gemachten Annahmen treffen also nicht zu. Die Wirkung von **20B** blieb weiterhin um einige Zehnerpotenzen hinter den Werten zurück, die zu einem früheren Zeitpunkt für den Naturstoff bestimmt worden waren^{25b)}.

CD-Spektren und absolute Konfiguration von Stegobinon

Abb. 1 zeigt das CD-Spektrum von synthetischem Stegobinon **20B** sowie das seines 7-Epimeren (**20A**). Beide weisen um 330 nm im Bereich der R-Bande des konjugierten Enon-Chromophors aus dem Dihydropyronring einen negativen Cotton-Effekt auf in Übereinstimmung damit, daß die absolute Konfiguration an C-2 und C-3 in beiden Verbindungen identisch ist. Aufgrund der dafür geltenden Regeln²⁶⁾ muß in Lösung die Konformation dieses Ringes einer der beiden entsprechen, die in Abb. 2 abgebildet sind.

Abb. 1. CD-Kurven von Stegobinon (20B) und seinem 7-Epimeren (20A) in Hexan

<u>CB 379/80.2</u> 334 (- 1,10)

Abb. 2. Die zwei extremen Konformationen von **20** (links nicht koplanares Enonsystem, rechts koplanares) für den Dihydropyronring mit einem negativen CD um 330 nm bei Projektion von O zu C der C=O-Gruppe

Zwischen 300 und 250 nm findet man zwei sehr intensive Cotton-Effekte entgegengesetzten Vorzeichens, die für die beiden 7-Epimeren enantiomorphes Aussehen haben. Hierbei handelt es sich aber trotz dieser "typischen" Gestalt nicht um ein CD-Couplet²⁷⁾, denn erstens liegt die intensive UV-Absorptionsbande (266 nm) zu weit vom

Nulldurchgang der CD-Kurve entfernt, zum zweiten gibt es im Molekül keine zwei Chromophore, die bei dieser Wellenlänge eine sehr starke Absorption haben. Man kann daher den Cotton-Effekt um 290 nm dem $n \rightarrow \pi^*$ -Übergang des Carbonyls aus der Seitenkette, den um 260 nm dem $\pi \rightarrow \pi^*$ -Übergang des konjugierten Enons zuordnen. Ersterer ist ungewöhnlich intensiv; so große $\Delta \varepsilon$ -Werte findet man nur, wenn in β , γ -Stellung zum Carbonyl eine Doppelbindung mit ganz bestimmter Geometrie angeordnet ist ²⁶⁾. Offenbar handelt es sich bei dieser um die C = C-Doppelbindung aus dem Dihydropyronring. Das Vorzeichen des Cotton-Effekts wird durch die absolute Konformation der genannten geometrischen Anordnung bestimmt; in Abb. 3 ist dies für den Fall eines negativen starken CD skizziert, so wie er im nativen Stegobinon gefunden wird. Für das 7-Epimere des Stegobinons muß die entsprechende absolute Konformation dazu spiegelbildlich sein.

Abb. 3. Bevorzugte Konformation von Stegobinon in Lösung. Die Lage der verdickt gezeichneten Bindungen folgt aus dem stark negativen CD um 290 nm

Der CD ergibt für Stegobinon und sein 7-Epimeres also nur die absolute Konformation, die absolute Konfiguration folgt aber aus einer Konformationsanalyse. Im allgemeinen ist die syn-periplanare Anordnung für einen Molekülteil C - C - C = O stabiler als andere Konformationen. Läge bevorzugt die 6/7-Bindung syn-periplanar zum gesättigten C = O, dann würde diese Geometrie keinen Anlaß zu einem übermäßig großen Cotton-Effekt geben; sie muß demnach so liegen, wie in Abb. 3 angedeutet. Halten wir dies fest und ordnen nun die C-7 – Methyl-Bindung syn-periplanar zum C = O an, dann ergibt sich daraus sofort die absolute Konfiguration an C-7: sie muß (7*R*) für natives Stegobinon (**20B**) sein und (7*S*) für 7-Epistegobinon (**20A**).

Diese Zuordnung wird auch gestützt durch das Vorzeichen des CD bei 260 nm. Im allgemeinen ist das Vorzeichen des Cotton-Effekts der $\pi \to \pi^*$ -Bande eines konjugierten Enons entgegengesetzt zu dem innerhalb seiner n $\to \pi^*$ -Absorption. Da aber beide 7-Epimeren des Stegobinons um 330 nm einen negativen CD geben, die 260-nm-Cotton-Effekte hingegen entgegengesetzte Vorzeichen aufweisen, so deutet dies ebenfalls auf eine Wechselwirkung des Enon-Chromophors mit einem anderen Chromophor hin. Als solcher kommt natürlich hier nur die gesättigte Ketogruppe infrage, deren $\pi \to \pi^*$ - Übergang mit einem sehr starken elektrischen Übergangsmoment verknüpft ist; die entsprechende Bande kann allerdings nicht beobachtet werden, da sie zu kurzwellig liegt. Die CD-Bande um 260 nm ist damit der langwellige Zweig eines CD-Couplets, dessen kurzwelliger um 170 nm auftreten müßte. Eine Ableitung des Vorzeichens dieses Couplets aus der Geometrie des Moleküls ist mit großen Unterschieden behaftet, da die Orientierung des elektrischen Übergangsmoments innerhalb des Dihydropyronringes nicht genau bekannt ist. Allein die Tatsache, daß die entsprechenden Cotton-Effekte für die beiden 7-Epimeren aber spiegelbildlich zueinander und von gleicher Größenordnung sind, spricht für diese Wechselwirkung. Ähnliche starke Wechselwirkungen zwischen dem $\pi \to \pi^*$ -Übergang eines konjugierten Enons und dem $\pi \to \pi^*$ -Übergang eines Esters fanden wir²⁸⁾ früher schon bei Nimbin und bei 4-En-3-ketosteroiden, die an C-10 eine Methoxycarbonylgruppe tragen. Auch in diesen Fällen ist übrigens ein sehr intensiver Cotton-Effekt innerhalb der $n \to \pi^*$ -Bande des Esterchromophors beobachtet worden, der einer analogen Regel zu der gehorcht, die für die β,γ -ungesättigten Ketone gilt.

Die Forderungen, die aus dem CD gezogen wurden, ließen sich durch Röntgenstrukturanalyse von 7-Epistegobinon (**20A**) beweisen: auch im Kristall liegt die Abb. 3 entsprechende (dazu aber spiegelbildliche) Konformation vor, diejenige des Dihydropyronringes entspricht Abb. 2 (rechts).

Röntgenstrukturanalyse von 7-Epistegobinon (20 A)

Die Kristallstruktur von **20 A** wurde mit direkten Methoden (MULTAN 80)²⁹⁾ und Fourier-Synthesen gelöst. Bei den Verfeinerungen (SHELX 76)³⁰⁾ mit 1700 unabhängigen Reflexen ($F_0 > 2\sigma$), wurde der stärkste Reflex 101 wegen offensichtlicher Intensitätsschädigung unterdrückt. Mit Verwendung isotroper Temperaturfaktoren und ohne H-Atome resultierte R = 0.132. Nach Einführung anisotroper Temperaturfaktoren ließen sich alle H-Atome in einer Differenz-Fourier-Synthese lokalisieren und – außer C10-H der Ethylgruppe – mit isotropen Temperaturfaktoren verfeinern. Den H-Atomen dieser Ethyl-Gruppe wurde ein gemeinsamer U-Wert zugeordnet. Mit einer Wichtung der F_0 -Werte nach $w = 1.7/\sigma^2$ ergaben sich abschließend $R_g = 0.0462$ ($R_g = [\Sigma w (F_0 - F_c)^2 / \Sigma w F_0^2]^{1/2}$) bzw. R = 0.0525. Die erhaltenen Parameter sind in Tab. 2 aufgeführt, F_0/F_c -Listen werden vom Autor (W. M.) auf Verlangen zugesandt.

Mit ungemittelten 1791 Reflexen wurde nun das Strukturmodell **20 A** wie das inverse Struktur modell verfeinert, wobei sich R_g -Werte von 0.0466 und 0.0467 ergaben (Berücksichtigung der anomalen Dispersion ³¹). Obwohl ein Signifikanz-Test nach *Hamilton* ³²) die Richtigkeit der absoluten Konfiguration **20 A** auf dem 99%-Niveau anzeigt, wäre wohl eine Entscheidung allein aufgrund dieser *R*-Wert-Differenz nicht vertretbar, sondern müßte durch zusätzliche Messung von Friedel-Reflexen gestützt werden. Dies war angesichts der anderen Untersuchungen in dieser Arbeit nicht nötig. Tab. 2 und Abb. 4 geben also die korrekte absolute Konfiguration von **20 A** wieder.

Der Dihydro- γ -pyron-Ring zeigt erwartungsgemäß gute Planarität (Tab. 4) an der Doppelbindung (Atome C5, C6 + O1, C7, C4, C13), wozu auch die Carbonylgruppe (C4-O2) sehr gut coplanar liegt. Aus dieser Ebene sind nun C2 um 29 pm nach unten (s. Abb. 4), C3 etwa um denselben Betrag nach oben ausgelenkt, so daß z. B. eine starke Abwinkelung der Ebene O1, C2, C3 gegen die des Doppelbindungsteils von 45.9° resultiert. Die Methylgruppe C11 an C2 ist dabei quasiäquatorial angeordnet, während die an C3 gebundene Gruppe (C12) quasiaxial steht.

Atome	x/a	y/b	2/c	υ,,	υ,,	U, j	U a s	υ,,	U 1 2
01	. 71 33 (2)	. 5694 ^{b)}	. 7964 (2)	.0497 (10)	. 0273 (9)	.0455(9)	.0017(8)	.0129(7)	0034(8)
C2	.8023(4)	. 4960 (3)	.6879(4)	.0445(15)	.0303(14)	.0628(18)	0048(13)	.0126(14)	.0032(11)
C 3	. 7774 (3)	. 5741 (4)	. 5 39 3 (3)	.0502(14)	.0480(14)	.0474(14)	0124(14)	.0177(12)	0005(13)
C4	.8333(3)	.7299{4}	. 56 32 (3)	.0478(12)	.0433(14)	.0459(13)	0001(12)	.0135(11)	0015(12)
02	.8940(3)	,7984{3}	. 4672 (3)	.0997(17)	.0674(15)	.0624(13)	.0045(12)	.0419(12)	0152(13)
C5	.8005(3)	. 7976 (3)	.7048(3)	.0371(11)	.0309(12)	.0464(13)	0015(11)	.0084(10)	0046(10)
C6	.7360(3)	.7161(3)	.8080(2)	.0318(10)	.0302(12)	.0346(11)	0014(10)	.0005(9)	0036(10)
C7	.6813(3)	.7693(4)	. 9527 (3)	.0512(14)	.0398(14)	.0353(12)	0057(11)	.0077(10)	0082(11)
C8	. 5106 (3)	. 7102 (4)	. 9655 (3)	.0465(12)	.0406(12)	. 04 37 (13)	0031(12)	.0160(10)	.0012(11)
03	.4818(3)	.6286(3)	1.0645(2)	.0721(13)	.0692(15)	.0537(11)	.0147(11)	.0217(10)	0071(11)
C9	. 3801 (4)	. 76 30 (5)	.8498(5)	.0481(15)	.0749(23)	.0808 (22)	.0195(19)	.0101(15)	.0066(15)
C10	.2291(6)	. 6805 (8)	. 8359 (8)	.0640(24)	.1738(70)	. 1644 (52)	.0773(49)	0282(30)	0305(29)
C11	.7504(7)	. 3381 (4)	.6898(7)	.0937(32)	.0353(17)	.1083(35)	0101(20)	.0429(29)	0028(17)
C12	.6027(4)	. 5712(6)	,4669(4)	.0689(21)	.0799(24)	.0520(17)	0167(20)	.0004(16)	0103(19)
C13	.8315(5)	. 9596 (4)	.7227(5)	.0817(25)	.0346(15)	.0789(25)	0023(16)	.0345(21)	0153(16)
C14	.8022(5)	. 7274 (7)	1.0848(4)	.0695(22)	.0976(36)	.0442(16)	0050(21)	0053(14)	0149(25)
	x/a	у/Ъ	z /c	υ		x/a	y/b	2/C	U
H2 C)	. 900 (4)	. 499 (4)	. 726 (3)	.048(8)	H11c	.757(6)	. 294 (6)	. 779 (6)	.111(18)
н 3	.853(4)	. 525 (3)	. 476 (4)	.055(8)	H12a	. 597 (5)	. 625 (5)	. 379 (5)	.086(12)
н7	.670(3)	.869(3)	. 943 (3)	.028(6)	H12b	. 528 (5)	.607(4)	. 528 (4)	.078(11)
н9а	. 364 (8)	. 878 (8)	.858(7)		H12c	.567(5)	. 464 (6)	. 444 (5)	.094(12)
н9ь	.419(8)	.764(8)	.762(7)		H13a	. 807 (6)	1.011(6)	.811(6)	.106(15)
Н10а	- 154 (8)	. 7 32 (7)	. 757 (7)	, 159 (11)	н 1 35	.839(6)	1.002(6)	. 6 35 (6)	.104(16)
Н10Б	.193(8)	.642(9)	.921(7)		H13c	.945(6)	.976(5)	.722(5)	.103(15)
H10c	. 252	. 576	.808		H14a	. 765 (5)	.761(5)	1.173(5)	.096(13)
H11a	.639(5)	. 330(4)	.658(4)	.067(11)	H145	.905(5)	.773(4)	1.077(4)	.071(10)
н115	.803(5)	. 293 (5)	.618(5)	.082(12)	H14c	.813(5)	. 6 38 (5)	1.083(4)	.075(15)

Tab. 2. Atomparameter und Temperaturfaktoren^{a)} von 20A

a) Definiert anisotrop nach $\exp[-2\pi^2(U_{11}h^2a^{*2} + \cdots 2U_{12}hka^*b^*)]$, isotrop nach $\exp[-2\pi^2Ud^{*2}]$ und in Einheiten von 10^{-20} m² angegeben. $-b^{b}$ Zur Fixierung des Nullpunktes festgehalten. $-c^{b}$ Die Nummern der H-Atome entsprechen denen der C-Atome, an die sie gebunden sind.

Tab. 3. Bindungslängen und -winkel in 7-Epistegobinon (20A) in pm bzw. Grad

01 - C2	144.9(3)	C5 - C6	134.5(3)	C2-01-C6	115.8(2)	C6-C5-C13	123.1(3)
- C6	135.7(3)	~ C13	151.0(4)	01-C2-C3	110.2(2)	01-C6-C5	123.8(2)
C2 - C3	151.1(4)	C6 - C7	150.4(3)	-011	105.8(3)	-c7	109.6(2)
- C11	150.8(5)	C7 - C8	152.7(4)	C3-C2-C11	116.8(4)	C5-C6-C7	126.6(2)
C3 - C4	150.7(4)	- C14	151.7(5)	C2-C3-C4	108.1(2)	C6-C7-C8	108.4(2)
- C12	151.9(5)	CB - 03	120.6(3)	-c12	113.9(3)	-C14	111.3(3)
C4 - 02	121.9(3)	- C9	149.6(5) ^{a)}	C4-C3-C12	109.9(3)	C8-C7-C14	112.8(3)
- C5	146.8(4)	C9 - C10	145.3(6) ^{a)}	C3-C4-02	121.9(2)	C7-C8-C9	115.8(2)
				-C5	116.2(2)	-03	122.1(2)
				02-C4-C5	121.8(3)	C9-C8-03	122.0(2)
				C4-C5-C6	119.3(2)	C8-C9-C10	116.2(4)
				-C13	117.5(2)		
				1			

^{a)} Durch starke anisotrope Schwingung verfälscht.

Abb. 4. ORTEP-Zeichnung³³⁾ von 7-Epistegobinon (**20 A**). Schwingungsellipsoide mit 33% Wahrscheinlichkeit

Гаb. 4. Abweichungen (in pm) von	"besten" Ebenen in	7-Epistegobinon	(20 A)
----------------------------------	--------------------	-----------------	--------

(I Ebene durch Negative Abwe	h O1, C4, C5, eichung bedeuter	C6, C7, C13 (t in Abb. 4: unt	Doppelbindung) er der Ringebene)	
	01 C4 C5 C6 C7 C13	-4.6 5.4 -2.3 1.6 4.9 -3.3	O2 C2 C3 C11 C12 C14	1.6 -28.9 27.3 -38.0 176.1 -130.3	
	II Ebene du	rch C 7, C 14, C	8, O3, C9, C1	0 (Seitenkette)	
	C7 C14 C8 Winkel z Bei Beree	7.6 0.6 -2.3 wischen Ebenen chnung von II o	O 3 C 9 C 10 I und II: 100.8 hne C 14 und C	-3.5 -14.1 11.6 10: 96.0°	

Auf dieselbe Seite des Pyronrings wie die axiale CH_3 -Gruppe erstreckt sich – praktisch senkrecht zur Ringebene – die Seitenkette. Der Winkel zwischen der Ebene der für die optischen Eigenschaften wichtigen Carbonylgruppierung (C7-9, O3) und der Doppelbindungsebene (Tab. 4) beträgt 96.0°. Dabei ist die C=O-Gruppe so orientiert,

daß sie etwa parallel zur Doppelbindung (Winkel 10.8°) und damit auch zur Ring-Carbonylgruppe steht. Sowohl die Methylgruppe C14 als auch C10 sind etwa coplanar mit der Carbonyl-Ebene II (Tab. 4) und beide in *cis*-Stellung dazu angeordnet (Abb. 4).

Das Zentrum C7 weist S-Konfiguration auf, so daß also die kristallisierte Form von 7-Epistegobinon (**20A**) das 2S, 3R, 7S-Isomere darstellt. Dem Naturstoff **20B** muß damit die Konfiguration 2S, 3R, 7R zukommen.

Unser Dank gilt vor allem dem Fonds der Chemischen Industrie für die Förderung dieser Untersuchung. G.S. dankt Herrn U. Wagner für gewissenhafte Messungen, der Deutschen Forschungsgemeinschaft und der Firma Hoechst AG für finanzielle Unterstützung.

Experimenteller Teil

Alle Temperaturangaben sind unkorrigiert. – IR-Spektren: Perkin-Elmer 157. – NMR-Spektren: Varian T 60, HA-100, XL-100, CFT-20 und JEOL FX-100. – Drehwerte: Perkin-Elmer-Polarimeter 141. – CD-Spektren: In Hexan, Dichrograph MARK III von ISA-Jobin-Yvon, gekoppelt mit einer PDP-8, Raumtemp., Küvetten der Schichtdicke 0.1 – 1.0 cm, Konzentration etwa 1 mg/ml. – Gaschromatographische Trennungen: Wilkins Aerograph A-90-P3 auf $1.5 - 2.0 \times 0.63$ -cm-Säulen mit Chromosorb G-AW-DMCS/60 – 80 mesh, 150 ml He/min. – Gaschromatographische Bestimmungen: Perkin-Elmer-900, 3 m \times 0.32-cm-Säulen mit Chromosorb G-AW-DMCS, 30 ml N₂/min, oder 45 m \times 0.025-cm-Kapillarsäule mit Ucon, 40 ml N₂/min. – Säulenchromatographische Trennungen an der 100fachen Menge Kieselgel 60 der Fa. Merck, Darmstadt.

1. (+)-(2R, 3R)-3-Methyl-4-penten-2-ol (5): Zur Lösung von 17.0 g (54.8 mmol) (-)-(1R, 2S, 3S, 4S)-2-exo, 3-exo-[(Z)-2-butenylborylendioxy]-3-endo-phenylbornan (4)⁹⁾ in 100 ml trockenem n-Hexan gab man bei -55 °C unter Rühren eine Lösung von 3.5 g (62 mmol) frisch destilliertem Acetaldehyd in 10 ml n-Hexan. Dann wurde 3 h bei -55 °C, 3 h bei -40 °C und 2 h bei -20 °C gerührt. Anderntags wurde das Lösungsmittel i. Vak. abgezogen und der Rückstand mit 100 ml wasserfreiem Ether versetzt. Nach Zugabe von 8.5 g (60 mmol) Triethanolamin wurde 4 h unter Rückfluß erhitzt. Der ausgefallene körnige Niederschlag wurde abfiltriert und mit 50 ml Ether ausgewaschen. Die Filtrate wurden vom Lösungsmittel befreit, das Produkt wurde aus dem Rückstand bei 10^{-2} Torr abkondensiert: 5.1 g (93%) 5, das laut analytischem Gaschromatogramm an der Kapillarsäule (50 °C) noch 5.5% des anderen Diastereomeren enthielt. - ¹H-NMR (CDCl₃) übereinstimmend mit Lit.¹). - ¹³C-NMR (CDCl₃): $\delta = 14.8$, 19.9, 44.8, 70.7, 115.0, 140.5.

α_{λ}^{25} (in Substanz):	589	578	546	436	365 nm
	+28.0	+ 29.2	+33.4	+58.2	+93.1°

Zu 10 mg (0.10 mmol) **5** in 0.1 ml Benzol und 0.03 ml Pyridin wurden 22 mg (0.10 mmol) Camphansäurechlorid ¹⁵) gegeben. Nach 1 h bei 40 °C wurde der gebildete Ester aus dem Reaktionsgemisch unmittelbar gaschromatographisch abgetrennt (Säulenmaterial SE 30, 140 °C). Das Diastereomerenverhältnis wurde durch analytische Gaschromatographie (Säule mit OV 225, 100 - 220 °C) zu 1: 5.88 bestimmt. Eine gleichartige Reaktionsfolge ausgehend von *racem*. **5** ergab 2 Peaks im Verhältnis 1: 1.

2. (+)-(3 R, 4 R)-4-Acetoxy-3-methyl-1-penten (6): Zu einer Lösung von 4.70 g (47 mmol) 5 in 7.5 ml (0.10 mol) Pyridin und 25 ml Methylenchlorid bei 0°C tropfte man langsam 4.25 g (55 mmol) Acetylchlorid in 5 ml Methylenchlorid. Nach 3 h bei Raumtemp. wurde auf eine Mischung aus 5 ml konz. Salzsäure und 20 g Eis gegossen. Die Phasen wurden getrennt und die wäßrige Phase noch zweimal mit je 7.5 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen wurden einmal mit je 5 ml gesättigter NaHCO₃-Lösung und zweimal mit je 5 ml Wasser gewaschen. Nach Trocknen über MgSO₄ wurde das Lösungsmittel über eine kurze Kolonne abdestilliert und der Rückstand fraktioniert: 5.84 g (87%), Sdp. 146 °C. – ¹H-NMR (CDCl₃): δ = 1.01 (d, J = 6.8 Hz, 3H), 1.16 (d, J = 6.4 Hz, 3H), 2.03 (s, 3H), 2.25 – 2.5 (m, 1H), 4.68 – 5.93 (m, 4H). – ¹³C-NMR (CDCl₃): δ = 15.45, 17.0. 21.1, 42.44, 73.4, 115.2, 139.5, 170.4.

$$\alpha_{\lambda}^{25}$$
 (in Substanz): 589 578 546 436 365 nm
+13.9 +15.0 +16.7 +30.3 +52.5°
 $C_8H_{14}O_2$ (142.2) Ber. C 67.57 H 9.92 Gef. C 68.21 H 9.77

3. (+)-(2S,3R)-3-Acetoxy-2-methylbutansäure-methylester (7): 2.0 g (14 mmol) 6 wurden in 40 ml Methylenchlorid und 4 ml Methanol bei -70 °C bis zur beginnenden Blaufärbung ozonisiert. Das überschüssige Ozon wurde in der Kälte mit Stickstoff ausgeblasen und das Reaktionsgemisch auf Raumtemp. erwärmt. Nach Abziehen des Lösungsmittels wurde der Rückstand mit einer Mischung aus 3.5 ml Ameisensäure und 3.5 ml 30proz. H₂O₂-Lösung versetzt. Es wurde langsam auf 80 °C erwärmt, nach 1 h abgekühlt und 4mal mit je 40 ml Methylenchlorid extrahiert. Die vereinigten Extrakte wurden 2mal mit je 15 ml Wasser gewaschen und anschließend i. Vak. vom Lösungsmittel befreit. Die zurückbleibende Säure wurde in wenig Ether aufgenommen und tropfenweise mit einer etherischen Lösung von Diazomethan versetzt, bis die gelbe Farbe erhalten blieb. Nach 10 min wurde das überschüssige Diazomethan mit 1 Tropfen konz. Salzsäure zerstört, die Lösung mit 3 ml gesättigter NaHCO₁-Lösung gewaschen, über Na₂SO₄ getrocknet und vom Lösungsmittel befreit: 1.85 g (76%) farblose Flüssigkeit. - ¹H-NMR (CDCl₃): $\delta = 1.09$ (d, J =7.1 Hz, 3 H), 1.15 (d, J = 5.6 Hz, 3 H), 1.95 (s, 3 H), 2.4 – 2.6 (m, 1 H), 3.6 (s, 3 H), 4.95 – 5.2 (m, 1 H). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 12.1, 17.5, 20.9, 44.2, 51.5, 70.8, 170.0, 173.8.$ $[\alpha]_{1}^{25}$ (c = 13.5 CDCl₃): 589 436 365 nm 578 546

 $+14.67 + 15.26 + 17.33 + 30.52 + 51.16^{\circ}$

Die Analysenprobe wurde gaschromatographisch gereinigt (Carbowax, 110°C).

C₈H₁₄O₄ (174.2) Ber. C 55.16 H 8.10 Gef. C 55.33 H 8.28

4. (+)-(2S, 3R)-3-Hydroxy-2-methylbutansäure-methylester (8): 1.85 g (10.6 mmol) 7 wurden in 10 ml 1 N methanolischer HCl solange unter Rückfluß erhitzt, bis die analytische Gaschromatographie (Säule mit SE 52, 110 – 260 °C) die Abwesenheit des Ausgangsmaterials anzeigte. Nun wurde die Hauptmenge des Methanols abdestilliert, der Rückstand mit 5 ml gesätt. NaHCO₃-Lösung neutralisiert und 4mal mit je 10 ml Ether extrahiert. Nach Trocknen über Na₂SO₄ wurde vorsichtig vom Lösungsmittel befreit. Nach Destillation des Rückstandes bei 74 °C/12 Torr Ausb. 1.36 g (97%). – ¹H-NMR (CDCl₃): δ = 1.18 (d, J = 7.2 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H), 2.3 – 2.6 (m, 2H), 3.71 (s, 3H), 3.85 – 4.14 (m, 1H). – ¹³C-NMR (CDCl₃): δ = 11.2, 19.9, 45.7, 51.3, 68.0, 176.1.

$[\alpha]_{\lambda}^{25}$ (c = 5.63, Methanol):	589	578	546	436	365 nm
	+8.70	+9.24	+ 9.95	+ 17.94	+ 30.37°

5. (2S,3R)-2-Methyl-3-(trimethylsilyloxy)butansäure-methylester (9): Zu einer Lösung von 2.0 g (15.1 mmol) 8 in 10 ml CCl₄ tropfte man eine Lösung aus 2.5 g (17.8 mmol) 1-(Trimethylsilyl)imidazol in 10 ml CCl₄. Nach Rühren über Nacht wurde das ausgeschiedene Imidazol unter Stickstoff abgesaugt und das Filtrat vom Lösungsmittel befreit: 2.1 g (68%) 9, das ohne zusätzliche Reinigung weiterverwendet wurde. – ¹H-NMR (CDCl₃): $\delta = -0.3$ (s, 9H), 0.8 (2d, 6H), 1.8–2.4 (m, 1H), 3.4 (s, 3H), 3.5–5.1 (m, 1H).

6. 9-Hydroxy-4,6,8-trimethyl-3,5,7-decantrion (2): Zu einer Lösung aus 4.04 g (40 mmol) Diisopropylamin in 40 ml THF wurden bei 0°C 25 ml einer 1.6 M n-Butyllithium-Lösung in Hexan getropft. Nach 1 h Rühren wurden tropfenweise 2.84 g (20 mmol) 4-Methyl-3,5-heptandion¹⁷)

bei 0 °C zugetropft. Die so erhaltene Lösung wurde zunächst mit 5 ml N, N, N', N'-Tetramethylethylendiamin, dann in einem Zuge mit 2.2 g (10 mmol) 9 versetzt. Es wurde noch 30 min bei 0 °C gerührt, anderntags in 100 ml gesätt. NH₄Cl-Lösung eingerührt und nach Trennen der Phasen die wäßrige Phase noch 5mal mit je 10 ml CH₂Cl₂ extrahiert. Die organischen Phasen wurden mit 10 ml gesättigter NaHCO₃-Lösung und 10 ml Wasser gewaschen sowie über Na₂SO₄ getrocknet. Nach Befreien vom Lösungsmittel i. Vak. und Abkondensieren des überschüssigen Diketons aus einem Bad von 60 °C bei 10⁻² Torr blieben 2.3 g eines gelben Öls zurück. - ¹H-NMR (CDCl₃): $\delta = 0.7 - 1.2$ (m, 15H), 1.6 - 2.0 (m, 3H), 2.1 - 3.0 (m, 4H), 3.5 - 4.5 (m, 2H), 16.6 (enolisches H).

7. (2R)-2,3-Dihydro-2,3,5-trimethyl-6-(1-methyl-2-oxobutyl)-4H-pyran-4-on (11 und 12): 2.1 g (10 mmol) des Produktes aus 6. wurden in 20 ml einer 5proz. Schwefelsäure in Methanol aufgenommen und über Nacht bei 0°C belassen. Nun wurde in 20 ml gesätt. NaHCO₃-Lösung eingegossen und 5mal mit je 10 ml CH₂Cl₂ extrahiert. Die organischen Phasen wurden 2mal mit je 5 ml Wasser gewaschen und über Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels blieben 1.6 g eines gelben Öls zurück, das laut analytischer Gaschromatographie (Säule mit SE 52, 170 °C) 56% der gesuchten Produkte 11 und 12 enthielt. Das Gemisch wurde präparativ gaschromatographisch (SE 30, 190 °C) abgetrennt.

C13H20O3 (224.3) Ber. C 69.61 H 8.99 Gef. C 69.64 H 9.04

Die Diastereomeren 11 und 12 wurden durch Mitteldruck-Flüssig-Chromatographie bei 4 bar an einer Kieselgelfertigsäule 60, Größe B, der Firma Merck mit $CH_2Cl_2 + 3\%$ Diethylether getrennt. Die entsprechenden Fraktionen wurden vorsichtig vom Lösungsmittel befreit. Um letzte Lösungsmittelreste abzutrennen, wurden 11 und 12 noch einmal gaschromatographiert: 130 mg (16%) 11 und 70 mg (11%) 12.

11: ¹H-NMR (CDCl₃): $\delta = 0.99 - 1.34$ (m, 12H), 1.799 und 1.804 (2s, 3H), 2.28 - 2.54 (m, 3H), 3.57 - 3.77 (2q, 1H), 4.36 - 4.56 (2dq, 1H). - ¹³C-NMR (CDCl₃): $\delta = 7.6$, 9.1, 15.38 und 15.56, 33.6, 43.4, 48.9 und 49.1, 77.0 und 77.2, 109.2, 168.6, 196.6, 206.6 und 207.0. - UV (n-Hexan): $\lambda_{max} = 266$ nm ($\epsilon = 9167$), 199 (2675).

 $[\alpha]_{\lambda}^{25} (c = 19.87, CDCl_3): 589 578 546 436 365 nm$ $+ 79.82 + 84.08 + 100.15 + 229.6 + 249.02^{\circ}$

12: ¹H-NMR (CDCl₃): $\delta = 1.0-1.5$ (m, 12H), 1.80 und 1.81 (s, 3H), 2.1-2.7 (m, 3H), 3.6-3.8 (q, 1H), 3.9-4.2 (dq, 1H). - ¹³C-NMR (CDCl₃): $\delta = 7.86$ und 7.92, 9.5, 10.7 und 10.9, 12.6 und 12.8, 19.0, 33.7 und 33.8, 44.86 und 44.91, 49.2 und 49.4, 79.7 und 79.8, 109.85 und 109.91, 168.37 und 168.41, 194.4, 206.4 und 206.9. - UV (n-Hexan): $\lambda_{max} = 266$ nm ($\epsilon = 9504$), 199 (1630).

 $[\alpha]_{\lambda}^{25}$ (c = 10.77, CDCl₃): 589 578 546 436 365 nm + 17.92 + 18.66 + 21.82 + 43.08 + 47.75°

Bei der Gaschromatographie des rohen Stegobinon-Gemischs wurden zwei Nebenprodukte aufgefangen. Die am wenigsten flüchtige Verbindung, vermutlich 14, war zu ca. 15% im Rohprodukt enthalten. - ¹H-NMR (CDCl₃): $\delta = 1.08$ (t, J = 7.6 Hz, 6H), 1.80 (s, 6H), 2.45 (q, 4H). - ¹³C-NMR (CDCl₃): $\delta = 9.1$ (q), 11.0 (q), 24.4 (t), 117.3 (s), 163.9 (s), 179.4 (s).

Die flüchtigste Komponente bestand laut ¹³C- und ¹H-NMR aus den *cis*- und *trans*-Isomeren von 13 im Verhältnis 2:1. – MS des Gemischs (70 eV): m/e = 28.5 (20%), 39.8 (4.5), 41.8 (13.6), 43.7 (10.5), 55.2 (8.4), 56.2 (17.5), 57.2 (45.9), 67 (4.6), 82.9 (59.8), 84 (13.3), 112 (11.6), 113.1 (100), 114.1 (5.9), 168 (34), 169 (3.2).

(2R,3S)-6-Ethyl-2,3-dihydro-2,3,5-trimethyl-4H-pyran-4-on [(2R,3S)-13]: ¹H-NMR (CDCl₃): $\delta = 0.9 - 1.4$ (m, 9H), 1.65 (s, 3H), 2.3 (q, 2H), 2.1 - 2.4 (m, 1H), 4.4 (d, J = 3.2, von q, J = 3.2

6.6 Hz, 1H). $- {}^{13}$ C-NMR (CDCl₃): $\delta = 9.3$ q, 10.7 (2q, 2C), 15.9 t, 25.4 d, 76.4 d, 107.1 s, 172.9 s, 197.1 s.

(2R,3R)-6-*Ethyl*-2,3-*dihydro*-2,3,5-*trimethyl*-4*H*-*pyran*-4-on [(2*R*,3*R*)-13]: ¹H-NMR (CDCl₃): $\delta = 0.9 - 1.4 \text{ (m, 9H)}, 1.65 \text{ (s, 3H)}, 2.3 \text{ (q, 2H)}, 2.1 - 2.4 \text{ (m, 1H)}, 3.9 \text{ (d, } J = 12.1 \text{ Hz von q}, J = 6.1 \text{ Hz}, 1 \text{ H}). - {}^{13}\text{C-NMR} (CDCl_3): \delta = 9.0 \text{ q}, 10.7 (2 \text{ q}, 2 \text{ C}), 19.1 \text{ t}, 25.5 \text{ d}, 79.2 \text{ t}, 107.9 \text{ s}, 172.6 \text{ s}, 197.1 \text{ s}.$

8. (3 S)-3-Hydroxy-2-methylbutansäure-ethylester (17): 10 g (69 mmol) α -Methylacetessigsäureethylester wurden zusammen mit 300 g Bäckerhefe und 50 g Rohrzucker in 1.3 l Wasser suspendiert. Über 2 Tage wurde die Suspension während der Gärung häufig umgeschüttelt und in Abständen von ca. 6 h mit jeweils 50 g Zucker versetzt. Nach Absaugen über Kieselgur wurde das Filtrat 3mal mit Ethylacetat extrahiert. Nach Einengen der Extrakte auf 50 ml wurden diese 2mal mit je 10 ml gesättigter NaHCO₃-Lösung und einmal 5 ml Wasser gewaschen. Nach Trocknen über Na₂SO₄ und Befreien vom Lösungsmittel erhielt man durch Destillation bei 82 °C/13 Torr 6.0 g (59%) 17. Durch Gaschromatographie an der Kapillarsäule (Ucon, 100 °C) wurde das Verhältnis des (2*R*,3*S*)-Isomeren (Retentionszeit 1488 s) zum (2*S*,3*S*)-Isomeren (Retentionszeit 1363 s) zu 6.4: 1 bestimmt. – ¹³C-NMR (CDCl₃), (2*R*,3*S*): $\delta = 11.3$, 13.2, 19.8, 45.9, 59.4, 67.4, 174.5. – (2*S*,3*S*): $\delta = 12.0$, 13.2, 19.1, 46.3, 59.4, 68.0, 174.5.

In einem anderen Versuch³⁴⁾ wurde aus 20.5 g (0.20 mol) Diisopropylamin in 100 ml THF mit n-Butyllithium bei 0 °C eine Lösung von Lithium-diisopropylamid bereitet. Zu der auf -50 °C abgekühlten Lösung wurden dann 11.89 g (90 mmol) (S)-3-Hydroxybutansäure-ethylester²⁰) gegeben. Die Temperatur stieg dabei auf -10 °C an. Bei dieser Temperatur wurde dann mit einer Lösung von 13.48 g (95 mmol) Methyliodid in 30 ml wasserfreiem Hexamethylphosphorsäuretriamid (HMPT) versetzt. Nach 30 min bei -10 °C und 45 min bei 45 °C wurde die Lösung in 300 ml gesättigte NH₄Cl-Lösung eingerührt und die organische Phase an 120 g Kieselgel mit Petrolether/Ether (1:1) chromatographiert: Aus den Eluaten isolierte man nach Befreien vom Lösungsmittel 10.85 g (82%) 17. Das Verhältnis des (2*R*,3*S*)- zum (2*S*,3*S*)-Isomeren wurde wie oben zu 1:24 bestimmt.

9. (3 S)-3-Hydroxy-2,2-dimethylbutansäure-ethylester (18): Aus 4.25 g (30 mmol) Cyclohexylisopropylamin in 30 ml THF wurde mit n-Butyllithium bei 0 °C das Amid dargestellt. Zu dessen Lösung gab man nach Abkühlen auf -78 °C in einem Zuge 2.1 g (15 mmol) des durch Hefe-Reduktion von 16 erhaltenen Esters 17, ließ innerhalb von 1 h auf -10 °C kommen, kühlte erneut auf -78 °C ab und versetzte mit einer Lösung von 2.86 g (20 mmol) Methyliodid in 2.0 g HMPT. Nach Auftauen über Nacht wurde in 20 ml eiskalte 10proz. Salzsäure gegossen. Die wäßrige Phase wurde 5mal mit je 20 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen wurden 4mal mit je 10 ml Wasser gewaschen und über MgSO₄ getrocknet. Nach Befreien vom Lösungsmittel i. Vak. ergab die Destillation bei 88 °C/12 Torr 2.16 g (90%) 18.

Zur Bestimmung der Enantiomerenreinheit wurden 20 μ l **18** mit 27.5 mg Eu(HFC)₃¹⁴⁾ in 0.5 ml CDCl₃ versetzt. Im ¹H-NMR-Spektrum zeigte die CH₂-Gruppe nur einen Signalsatz, während das Spektrum einer entsprechend hergestellten racemischen Probe einen vollkommen getrennten doppelten Signalsatz ergab.

10. (+)-(3 S)-3-Hydroxy-2,2-dimethylbutansäure (19): Der unter 9. erhaltene Ester wurde mit 10 ml 20proz. wäßr. Kalilauge über Nacht gerührt. Dann wurde unter Kühlung mit konz. Salzsäure bis pH 1 angesäuert. Nach 5maligem Extrahieren mit je 20 ml Ether wurden die Extrakte über Na₂SO₄ getrocknet und vom Lösungsmittel befreit. Eine Probe der erhaltenen Säure 19 wurde gaschromatographisch (Säule mit SE 30, 140 °C gereinigt:

 $[\alpha]_{\lambda}^{25}$ (c = 12.12, CDCl₃): 589 578 546 436 365 nm + 12.62 + 13.04 + 15.02 + 24.83 + 37.29°

11. (2S)-2,3-Dihydro-2,3,5-trimethyl-6-(1-methyl-2-oxobutyl)-4H-pyran-4-on (20 und 21): 2.92 g (20 mmol) des wie unter 8. beschrieben aus 16 erhaltenen Esters 17 wurden wie unter 5. beschrieben silyliert und wie unter 6. und 7. beschrieben umgesetzt:

20 : $[\alpha]_{\lambda}^{25}$ (c = 3.72, CDCl ₃):	589	578	546	436	365 nm
	-131.72	- 138.44	- 163.17	- 373.92	-1460.75°
21 : $[\alpha]_{\lambda}^{25}$ (c = 9.94, CDCl ₃):	589	578	546	436	365 nm
	- 79.09	- 83.10	- 86.28	-187.93	– 264.19°

12. Stegobinon (20 B) und 7-Epistegobinon (20 A): Das unter 11. erhaltene Epimerengemisch 20 wurde an einer Knauer-Fertigsäule (0.16×25 cm) mit Kieselgel Lichrosorb 60 mit einem 830 Liquid-Chromatograph der Firma Dupont bei 70 atm mittels CH₂Cl₂/Petrolether (40-60 °C) (1:20) aufgetrennt.

Stegobinon (20B): teilweise kristallisiertes Öl. – ¹³C-NMR (CDCl₃): δ = 7.9, 9.3, 12.8, 15.6, 33.8, 43.7, 49.2, 77.2, 109.5, 168.8, 196.9, 207.4. – ¹H-NMR (CDCl₃): δ = 1.04 (t, J = 7.2 Hz, 3 H), 1.02 (d, J = 7.3 Hz, 3 H), 1.27 (d, J = 6.5 Hz, 3 H), 1.29 (d, J = 7.0 Hz, 3 H), 1.77 (s, 3 H), 2.35 – 2.54 (m, 3 H), 3.61 (q, 1 H), 4.44 (d, J = 3.5 von q, J = 6.5 Hz, 1 H), vgl. Lit.⁴⁾.

7-Epistegobinon (20A): Schmp. $46-48 \,^\circ\text{C}$. $- \,^1\text{H-NMR}$ (CDCl₃): $\delta = 1.06$ (t, J = 7.0 Hz, 3 H), 1.9 (d, J = 7.6 Hz, 3 H), 1.29 (d, J = 6.6 Hz, 3 H), 1.29 (d, J = 6.6 Hz, 3 H), 1.78 (s, 3 H), 2.22 - 2.60 (m, 3 H), 3.65 (q, 1 H), 4.44 (d, J = 3 Hz von q, J = 7 Hz, 1 H).

13. Röntgenstrukturanalyse von 20A: Untersucht wurde ein farbloser Quader von ca. $0.7 \times 0.45 \times 0.2$ mm, Raumgruppe $P2_1$, Z = 2, mit Gitterkonstanten bei -60 °C von a = 826.3(2), b = 915.3(3), c = 900.0(2) pm, $\beta = 96.14(2)$ °, $d_c = 1.101$ gcm⁻³.

Zur Datensammlung diente ein Vierkreisdiffraktometer mit N₂-Kühleinrichtung (Enraf-Nonius, CAD4) bei – 60 °C und graphitmonochromatisierte Mo- K_{α} -Strahlung. Angewandt wurde der $\omega/2\Theta$ -Scan-Modus über 1.2 + 0.35 tg Θ)° ± 25% für Untergrundmessung. Meßbereich 2° < Θ < 32°. Meßzeit variabel, max. 120 s/Reflex. Übliche Datenreduktion ³⁵). Zur Lösung der Struktur wurden Rechnungen im System STRUX³⁶ an der TR 440 des Rechenzentrums der Universität Marburg und der CYBER 174 des HRZ Gießen vorgenommen.

- ⁵⁾ M. Sakakibara und K. Mori, Tetrahedron Lett. 1979, 2401.
- ⁶⁾ J. M. Ansell, A. Hassner und W. E. Burkholder, Tetrahedron Lett. 1979, 2497.
- ⁷⁾ J. H. Tumlinson, M. G. Klein, R. E. Dolittle, T. L. Ladd und A. T. Proveaux, Science 197, 789 (1977); D. M. Light und M. C. Birch, Naturwissenschaften 66, 159 (1979); J. P. Vité, D. Klimetzek, G. Loskant, R. Hedden und K. Mori, ebenda 63, 582 (1976).
- ⁸⁾ Vgl. Kurzmitteil. R. W. Hoffmann und W. Ladner, Tetrahedron Lett. 1979, 4653.
- ⁹⁾ Vgl. R. W. Hoffmann und H. J. Zeiβ, Angew. Chem. 91, 329 (1979); Angew. Chem., Int. Ed. Engl. 18, 306 (1979).

2800

¹⁾ VIII. Mitteil.: R. W. Hoffmann und H. J. Zeiß, J. Org. Chem. 46, 1309 (1981).

O. V. Kozulina und Z. P. Baryshnikova, Restaurator 2, 191 (1978) [Chem. Abstr. 91, 69942e (1979)]; G. W. Bennett und E. S. Runstrom, Pest Control 47, 14 (1979) [Chem. Abstr. 91, 187889r (1979)]; P. S. Tyler und T. J. Binns, J. Stored Prod. Res. 13, 29 (1977) [Chem. Abstr. 88, 17264d (1978)]; R. S. Deshpande, P. R. Adhikary und H. P. Tipnis, Bull. Grain Technol. 12, 232 (1974) [Chem. Abstr. 84, 55270c (1976)]; S. W. Carter, P. R. Chadwick und J. C. Wickham, J. Stored Prod. Res. 11, 135 (1975) [Chem. Abstr. 84, 146087q (1976)]; S. W. Carter, ebenda 11, 187 (1975) [Chem. Abstr. 85, 1174b (1976)]; N. Muthu und S. M. Ahmed, Int. Pest Control 15, 8 (1973) [Chem. Abstr. 79, 14397c (1973)]; P. J. Thomas und P. L. Bhatnagar-Thomas, Nature (London) 219, 949 (1968); R. W. Lemon, J. Stored Prod. Res. 3, 283 (1967) [Chem. Abstr. 68, 58707f (1968)]; D. L. Lindgren und L. E. Vincent, ebenda 2, 141 (1966) [Chem. Abstr. 66, 27963r (1967)].

³⁾ Y. Kuwahara, H. Fukami, S. Ishii, F. Matsumura und W. E. Burkholder, J. Chem. Ecol. 1, 413 (1975).

⁴⁾ Y. Kuwahara, H. Fukami, R. Howard, S. Ishii, F. Matsumura und W. E. Burkholder, Tetrahedron 34, 1769 (1978).

- ¹⁰⁾ R. W. Hoffmann und H. J. Zeiβ, Angew. Chem. 92, 218 (1980); Angew. Chem., Int. Ed. Engl. 19, 218 (1980).
- 11) T. Herold, U. Schrott und R. W. Hoffmann, Chem. Ber. 114, 359 (1981).
- 12) R. W. Hoffmann und T. Herold, Chem. Ber. 114, 375 (1981).
- 13) J. A. Dale und H. S. Mosher, J. Am. Chem. Soc. 95, 512 (1979).
- 14) H. L. Goering, J. N. Eikenberry und G. S. Koermer, J. Am. Chem. Soc. 93, 5913 (1971).
- ¹⁵⁾ H. Gerlach, Helv. Chim. Acta 51, 1587 (1968).
- ¹⁶⁾ A. Tai und M. Imaida, Bull. Chem. Soc. Jpn. 51, 1114 (1978).
- ¹⁷⁾ J. D. v. Mikusch-Buchberg und A. N. Sagredos, Liebigs Ann. Chem. 681, 118 (1965).
- ¹⁸⁾ S. N. Huckin und L. Weiler, Can. J. Chem. 52, 1343 (1974).
- ¹⁹⁾ F. B. Kerby, T. M. Harris und C. R. Hauser, J. Org. Chem. 28, 2266 (1963); M. L. Miles, C. R. Hauser, T. M. Harris und C. M. Harris, ebenda 30, 1007 (1965); P. J. Wittek, K. B. Hindley und T. M. Harris, ebenda 38, 896 (1973).
- ²⁰⁾ D. D. Ridley und M. Stralow, J. Chem. Soc., Chem. Commun. 1975, 400; B. S. Deol, D. D. Ridley und G. W. Simpson, Aust. J. Chem. 29, 2459 (1976); B. Seuring und D. Seebach, Helv. Chim. Acta 60, 1175 (1977); A. I. Meyers und R. A. Amos, J. Am. Chem. Soc. 102, 870 (1980); G. Fráter, Helv. Chim. Acta 63, 1383 (1980).
- ²¹⁾ R. U. Lemieux und J. Giguere, Can. J. Chem. 29, 678 (1951); G. Fráter, Helv. Chim. Acta 62, 2829 (1979).
- ²²⁾ G. Fráter, Helv. Chim. Acta 62, 2825 (1979).
- ²³⁾ M. W. Rathke und A. Lindert, J. Am. Chem. Soc. 93, 2318 (1971).
- ²⁴⁾ J. S. Brooks und G. A. Morrison, J. Chem. Soc., Chem. Commun. 1971, 1359.
- ²⁵⁾ W. E. Burkholder, Department of Entomology, Univ. of Wisconsin, Madison, a) Privatmitteilung vom 2. 1. 1980, b) vom 18. 11. 1980.
- ²⁶⁾ Vgl. G. Snatzke und F. Snatzke in F. Ciardelli und P. Salvadori, Fundamental Aspects and Newer Developments in Optical Rotatory Dispersion and Circular Dichroism, S. 109, Heyden, London 1973.
- ²⁷⁾ J. A. Schellman, Acc. Chem. Res. 1, 144 (1968).
- 28) G. Snatzke und K. Schaffner, Helv. Chim. Acta 51, 986 (1968).
- ²⁹⁾ P. Main, MULTAN 80: A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, York 1980.
- ³⁰ G. M. Sheldrick, SHELX 76: Program for Crystal Structure Determination, Cambridge 1976.
- 31) D. T. Cromer und D. Libermann, J. Chem. Phys. 53, 1891 (1970).
- 32) W. C. Hamilton, Acta Crystallogr. 18, 502 (1965).
- ³³⁾ C. K. Johnson, ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structures Illustrations, ORNL 1965.
- 34) Experimentell bearbeitet von Herrn Dipl.-Chem. U. Weidmann.
- 35) U. Müller, R. Schmidt und W. Massa, CADLP, Programm zur LP-Korrektur von Diffraktiometerdaten, Marburg.
- ³⁶⁾ R. Schmidt und W. Massa, STRUX, Programmsystem zur Verarbeitung von Röntgendaten, Marburg 1979.

[379/80]